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[I]   In this study, we present an aerosol data assimilation system destined for operational 
use at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC). The 
system is an aerosol physics version of the Naval Research Laboratory (NRL) 
Atmospheric Variational Data Assimilation System (NAVDAS) that is already operational. 
The purpose of this new system, NAVDAS-Aerosol Optical Depth (NAVDAS-AOD) is to 
improve the NRL Aerosol Analysis and Prediction System (NAAPS)'s forecasting 
capability by assimilating observational data sources with NAAPS forecast fields. This 
will allow for not only improved aerosol forecasting but also for dramatically enhanced 
global scale research capabilities for the study of aerosol-meteorology interaction. 
NAVDAS-AOD assimilates a newly developed over-water Moderate-Resolution Imaging 
Spectroradiometers (MODIS) level 3 aerosol product with NAAPS. This paper is the 
second in a series which describes NRL's program to realistically monitor global 
aerosol distributions. Here we explain the reasons and procedures for constructing the 
over-water level 3 MODIS aerosol product, describe the theoretical basis for 
NAVDAS-AOD, and provide a thorough statistical error analysis for both the MODIS 
observations and the NAAPS model background fields that are critical to aerosol 
data assimilation. Using 5 months of analysis, our study shows that by carefully screening 
over-water satellite observations to ensure only the best quality data are used in the 
aerosol assimilation process, the NAVDAS-AOD can significantly improve the NAAPS 
global aerosol optical depth analysis as well as improve the aerosol forecast skill. 

Citation:   Zhang, J., J. S. Reid, D. L. Westphal, N. L. Baker, and E. J. Hyer (2008), A system for operational aerosol optical depth 
data assimilation over global oceans, J. Geophys. Res., 113, D10208, doi:10.1029/2007JD009065. 
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forecasting system, here we choose to use the conventional 
aerosol products that are widely accepted through the 
community. We optimistically assume that the algorithms 
are accurate and that instrument-specific biases have been 
eliminated by the developers or at least accounted for in the 
reported error statistics and described in publications. By 
using aerosol products such as operational MODIS aerosol 
product, we are taking advantage of years of work by many 
different groups to develop and validate these products [e.g., 
Renter et al, 2005; Hsu et al, 2006; Husar et al, 1997; 
Kahn et al, 2005]. An aerosol assimilation system that uses 
aerosol optical depth (AOD) instead of radiances can be 
easily expanded to include observations from other existing 
or future sensors; again, provided the error statistics are 
known. Validation of the AOD observations, forecasts, and 
analyses is more easily performed since AOD is a com- 
monly measured quantity (e.g., Aerosol Robotic Network 
(AERONET) global network of Sun photometers [Holben et 
al, 1998]). Last, the success of radiance assimilation 
depends on the accuracy of forecasted temperature and 
moisture fields. Assimilation of AOD avoids this immediate 
dependency. 

[5] In any data assimilation process, high data quality is 
required, and biases and noises in the observational data 
must be carefully examined. Large uncertainties exist in 
aerosol products, especially for over land retrievals where 
bright heterogeneous surface characteristics pose a chal- 
lenging problem [Levy et al, 2007]. Studies have also 
shown that even with the relatively accurate aerosol retriev- 
als over oceans, extra quality assurance steps need to be 
taken before implementation of the aerosol product into 
models [Zhang and Reid, 2006]. A careful data screening 
process is needed to remove noisy data, correct biases, and 
ensure only the best quality data are used in an aerosol data 
assimilation scheme. 

[6] Currently, there are three aerosol products that are 
created in a near real time mode and could be used in the 
data assimilation process: MODIS, AVHRR, and TOMS/ 
OMI. Among the three products, we chose the Aqua and 
Terra MODIS aerosol products due to their fine spectral, 
spatial, and temporal resolutions. Comparing with previous 
sensors such as AVHRR, the MODIS products have dem- 
onstrated superior performance in both cloud and aerosol 
detections [Renter et al, 2005; Zhang and Reid, 2006]. 

[7] This paper is the second in a series which outlines 
advances in the Naval Research Laboratory's (NRL's) 
global aerosol data assimilation and modeling program. 
The first provided a thorough analysis of correction factors 
for MODIS over-ocean aerosol optical depth products for 
use in data assimilation [Zhang and Reid, 2006]. Here we 
present one of the world's first aerosol data assimilation 
systems suitable for operation use that assimilates the 
quality controlled (QC) and quality assured (QA) MODIS 
over-water aerosol product described in that previous paper 
with NAAPS forecast fields. For the data assimilation 
package, we adopted and modified the NRL Atmospheric 
Variational Data Assimilation System (NAVDAS), which 
has been used operationally for assimilation of conventional 
and satellite-based observations [Baker et al, 2005]. In 
contrast with previous aerosol assimilation efforts [Collins 
et al, 2001; Yu et al, 2004], we use a 2-D variational 
approach. In comparison to the OI technique, the 2-D, 3-D, 

and 4-D variational techniques are more suitable for oper- 
ational use since local data selection is unnecessary and a 
more powerful statistical error analysis can be applied. 

[8] In this manuscript, we present an outline of the 
NAVDAS Aerosol Optical Depth package (NAVDAS- 
AOD). Data screening processes for the operational MODIS 
over-water aerosol product are briefly summarized. Focus 
points include a study of the error covariance matrix of the 
NAAPS model (background) field, an evaluation of the 
performance of 5 months of MODIS aerosol assimilation 
using NAVDAS-AOD, and the impact on the first 48 h of 
NAAPS aerosol forecasts. 

2.    Satellite Data 

[9] In NAVDAS-AOD, Terra (MOD04) and Aqua 
(MYD04) MODIS level II aerosol products are collected 
from the NOAA NESDIS Near Real Time Processing Effort 
(NRTPE) which is produced with a latency of 3 h or less in 
most cases. NRTPE is a joint effort from NASA, NOAA, 
Air Force Weather Agency, the Naval Research Laboratory, 
and the Naval Oceanographic Office. With its reliable data 
link and short data latency, NRTPE has proven to be one of 
the best data sources for operational near-real time data. For 
the study presented here, NAVDAS-AOD is tested with 
5 months of data collected from January to May 2006. 

[10] MODIS has a total of 36 spectral channels ranging 
from near-ultraviolet to infrared. Over global oceans, an 
optimal minimization technique is applied to six spectral 
channels (ranging from 0.55 to 1.2 ^m) for retrieving aerosol 
optical depth (r) and aerosol size parameter [Renter et al, 
2005]. Although MODIS can provide aerosol retrievals at 
multiple channels, the aerosol r in this paper refers to r at 
0.55 fim. Although only one channel information is used in 
this study, the utilization of the spectral signatures from 
multiple channels is important and is subject to future studies. 
Renter et al [2005] gave an overall accuracy for over-water 
aerosol optical depth of 0.03 ± 0.05 r. However, Zhang and 
Reid [2006] showed that systematic biases exist in MODIS 
over-water aerosol retrievals. These are related to cloud 
fraction and contamination, aerosol type, and near-surface 
wind speed impacting the lower boundary condition. 
Empirical corrections were proposed and data screening 
strategies were applied to remove outliers. In this study, we 
adopted the empirical corrections and data screening pro- 
cesses described by Zhang and Reid [2006] where a total of 
40% data were lost but 70% of the significant outliers were 
removed. This strict QA procedure is necessary to remove 
these outliers that would adversely impact the model and 
propagate through the system, particularly in the middle- to 
high-latitude oceans. 

[11] After the empirical corrections and data screening 
procedures, MODIS r data is binned into 1° x 1° latitude/ 
longitude grids to form a 6 hourly, data assimilation quality, 
Level 3 product (e.g., at NAAPS time of t = 6 h, we used 
both Terra and Aqua MODIS data from t = 3 h to t = 9 h). In 
this step, we further exclude data entries with MODIS cloud 
fraction larger than 30%. We also add an additional QC 
procedure by removing bins that are isolated from other 
continuous aerosol features and bins with less than five 
valid data entries. The additional QC procedures are includ- 
ed to minimize erroneous aerosol features in MODIS 
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aerosol product that are introduced by cloud artifacts 
[Zhang et al, 2005; Zhang and Reid, 2006]. 

[12] The QA and QC procedures described in this paper, 
however, are different from traditional data assimilation 
approaches where noises in observations are removed based 
on innovation (difference in observations and forecasts) 
checks [e.g., Dee et al, 2001]. We argue that external QA 
and QC checks are necessary for aerosol data assimilation 
because of the following reasons: 

[13] 1. Innovation checks could not flag cases when both 
observations (O) and forecasts (F) have large biases, yet O 
minus F values are small. 

[14] 2. The efficiency of observations noise removal 
could be sensitive to arbitrary thresholds used in the 
innovation checks. 

[15] 3. Large innovation values could be valid in cases 
newly formed aerosol plumes with significant AOD values 
which models fail to predict. Examples of such cases are 
biomass burning events with fire hot spots under cloud 
covers. Aerosol forecasting models such as NAAPS rely on 
satellite detected hot spots to define their emission sources 
for biomass burning aerosols. Missing satellite-detected hot 
spots will cause models to miss a possible significant 
biomass burning episode. However, with bias correction, 
it is possible to include such cases, as will be discussed in 
later part of the text [Dee and da Silva, 1999]. 

[16] 4. By performing QA with this method, we can 
generate a data assimilation quality level 3 product that is 
applicable to any model, not just NAAPS/NAVDAS-AOD. 

3.    Description of the NAAPS Model 

[ 17] With its transition to the Fleet Numerical Meteorology 
and Oceanography Center (FNMOC) in October of 2006, 
NAAPS is the U.S. Navy's (and the world's first) truly 
operational global aerosol forecast model. NAAPS produces 
6-d forecasts of S02, sulfate, dust, biomass burning smoke 
and sea salt mass concentration with 1 ° x 1 ° resolution on 30 
vertical levels [Witek et al, 2007]. 

[is] The NAAPS global model is a modified form of a 
hemispheric model of sulfate aerosols developed by 
Christensen [1997]. NAAPS is an offline model that utilizes 
the meteorological analysis and forecast fields from the Navy 
Operational Global Analysis and Prediction System 
(NOGAPS) [Hogan and Rosmond, 1991; Hogan and Brody, 
1993]. Dynamical fields from NOGAPS are remapped to 1° 
resolution from the 0.5° native NOGAPS resolution. 
Twice daily, the NOGAPS weather forecast model provides 
dynamical fields to NAAPS at 6-h intervals for the 6-d forecast 
period. Transport is calculated using a 3-D semi-Lagrangian 
scheme [Staniforth and Cote, 1991] with departure points 
calculated using the method of Ritchie [1987]. 

[19] Modifications have been made to the interpolation of 
wind and concentration fields across the poles, and the 
interpolation method was changed from a third-order 
Lagrangian to fifth-order Lagrangian. Horizontal and ver- 
tical diffusion are calculated with a finite element scheme. 
The vertical diffusion coefficient parameterization Kz is 
based on the Monin-Obukhov similarity theory for the 
surface layer using the input NOGAPS data. The K2 profile 
is extended to the whole boundary layer by using a simple 
extrapolation height of the mixing layer. The horizontal 

diffusion coefficient is set to a nominal value of 6 x 104m2s_1. 
The condensation/precipitation scheme is derived from 
the NOGAPS atmospheric model and is further described 
in the work of Hogan and Rosmond [1991]. These cloud 
profiles are used to calculate the wet removal and reaction 
rates of the various species. The dry deposition velocity is 
based on the resistance method [Voldner et al, 1986; 
Walcek et al, 1986; Slinn and Slinn, 1980], where the 
deposition velocity depends on the turbulence of surface 
layer and surface type (ocean, grassland, etc.). 

[20] Aerosol source functions come from a variety of 
static and dynamical algorithms. Sulfur dioxide emission is 
based on the GEIA inventory, version 1 A, for the year 1985 
with a seasonal variation and two-level vertical distribution 
[Benkovitz et al, 1996]. Natural emissions of DMS are 
immediately converted to 95% sulfur dioxide and 5% 
sulfate. The gas-phase chemistry is described by a simple 
linear reaction rate, which depends on the time of year and 
latitude [Christensen, 1997]. Dust emission occurs when- 
ever the NOGAPS friction velocity exceeds a threshold 
value and the surface moisture is less than 0.3. The 
threshold friction velocity is set to infinity except in known 
dust-emission areas where it is 60 cm s [Westphal et al, 
1988]. These areas are currently defined as areas covered by 
the erodible land-use types used in the USGS Land Cover 
Characteristics Database with modification guided by an 
analysis of TOMS aerosol index. Smoke emissions are 
based on the Fire Locating and Modeling of Burning 
Emissions (FLAMBE) source functions based on near-real 
time geostationary and MODIS fire products [Reid et al, 
2004]. 

4.   Overview of the Aerosol Data Assimilation 
Package 

[21] NAVDAS-AOD is founded on the 3-D variational 
analysis option of the NRL Atmospheric Variational Data 
Assimilation System (NAVDAS) [Daley and Barker, 2001]. 
NAVDAS is an operational three-dimensional variational 
data assimilation suite for generating atmospheric state 
estimates to satisfy a variety of U.S. Navy needs. NAVDAS 
is formulated in observation space. The preconditioned 
conjugate gradient method [Daley and Barker, 2001] is 
used to minimize the cost function, which can be under- 
stood as the process to minimize the analysis error variance 
in linear cases. The number of iterations required to reach 
convergence is minimized through the use of dual block 
diagonal preconditioners with Choleski decomposition. 
Forward operators are formulated and used for the direct 
assimilation of Advanced Television Infrared Observation 
Satellite Operational Vertical Sounder (ATOVS) radiances 
and SSM/I wind speeds and total precipitable water. 
NAVDAS also contains a comprehensive diagnostic suite, 
including complete observation traceability, Web-based 
observation monitoring, chi-square monitoring of innova- 
tions, the adjoint of the assimilation system, and analysis 
error variance estimation. 

[22] The traditional objective in data assimilation is to 
create a new analysis field by correcting the background 
field (i.e., the current model stage) using observations, and 
then use the new analysis field as an initial condition for 
future model runs. In the case of the assimilation of a two- 
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dimensional variable such as optical depth (r), we degraded 
NAVDAS from 3-D to 2-D variational approach with three 
steps: 

[23] 1. Preprocessing: a process to convert NAAPS mass 
concentration to aerosol optical depth: 

TbA =Hm_T(Cm) +£bA (•) 

where, rbA is the background (prior forecast) aerosol optical 
depth vector, Cm is the NAAPS mass concentration, and 
Hm_T is the forward operator that represents the transforma- 
tions from NAAPS mass concentration to optical depth (see 
section 4.1 for detail discussions ofHmT). ebx is the error in 
TbA introduced by the Hm T operator. 

[24] 2. Two-D variational assimilation of the optical depth 
field 

^x = nx + P*Hr [HP*Hr + R] ~1[T0X - H(r4A)],       (2) 

where raA is the analysis optical depth vectors, TOA is the 
observation optical depth vector, and H is the observation 
operator that represents any necessary spatial and temporal 
interpolations from background to the observational space. 
Pb and R are the background error covariance and the 
observation error covariance matrices, respectively. 

[25] The analysis field (raA) can be regarded as 
background (TbA) plus a correction term (fA, also 
P/,H7[HPiH

7+/?r'[ToA-//(TbA)]), where the correction 
term is the difference between the observation and back- 
ground vectors weighted by the ratio of background error 
covariance matrix to total error covariance matrix in the 
observational space (with H operator). 

[26] 3. Postprocess: a process to convert raA to NAAPS 
mass concentration: 

HT-m(Tax) + Cm (3) 

concentration. em is the error in Cm introduced by the 
HT m operator. Details of the HT_m operator will be discussed 
in section 4.3. Both em and ebX could be transformed as part 
of the bias term of rbA, which is assumed to be zero for this 
study. The background bias correction will be discussed 
further in the later part of this paper. 

[27] The NAAPS prognostic variable is the 3-D aerosol 
mass concentration. In this study, we reduced the problem to 
a 2-D variational assimilation approach simply because 
the operational MODIS aerosol product only provides 
column integrated aerosol optical properties (2-D). With 
the use of 3-D observations of aerosol optical properties 
from CALIPSO or through the height information available 
from some gas retrievals, it is feasible in some circum- 
stances to extend equation (2) to a 3-D variational approach 
in future studies. 

[28] A flowchart of the NAVDAS-AOD process is shown 
in Figure 1. Four major steps are included: (1) Convert 
NAAPS mass concentration to r bA (3-D to 2-D conver- 
sion); (2) run NAVDAS 2-D var to create a new analysis 
field raA from r bA and TOA; (3) improve the NAAPS mass 
concentration field using raA (2-D to 3-D conversion); and 
(4) use the new mass concentration field as an initial 
condition for the next 6-h NAAPS run. 

4.1.   NAAPS Aerosol Mass to Optical Depth Transfer 
Function (HTm operator) 

[29] In the first step, rb values are estimated from NAAPS 
3-D mass concentration (g/m3) using a bulk model: 

TbX • £MA)*CV,(*tf.A) (4) 

where HT m is the backward operator that represents the 
transformations  from  optical  depth  to  NAAPS  mass 

where for each species ;' and wavelength A, rbA is the 
wavelength dependent background aerosol optical depth, 
Qe(A) is the wavelength dependent mass extinction 
efficiency (m2 g~'), and Cm is the aerosol particle mass 
concentration (g m~3) and /<,(RH, A) is the aerosol 
hydroscopic growth factor for extinction. For this first 
generation model, mass extinction cross sections (as a 
function of wavelength) for dry dust, sulfate, and sea salt are 

NAVDASAOO Flow Chart 

NAAPS Background 
(Corwl to 20) 

' 

—•    |         NAVOAS Timt»T 

/                        1 
'                         * Tme = T • 6 hour 

NtwJ-OAOOIWd Sattltt retrieval* (3-D)          1' 

I 
2-0 ACO to 3-0 man 
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Forecast 
Ms 

001 
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I 

t 
AMfeMMMn 
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NAVDAS 
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/ '         1 
Satette retrievals (2-D) New 2-D AOD held 

Figure 1.   Flowchart of the NAVDAS-AOD. 
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obtained from Optical Properties of Aerosols and Clouds 
(OPAC) [Hess et al., 1998]. The parameters used in this 
section of study may be updated when new observational 
parameters are available. Smoke properties are derived from 
Reid et al. [2005]. The aerosol hygroscopic growth factor 
for aerosol absorption coefficient and dust scattering 
coefficient are assumed to be zero. The aerosol hygroscopic 
growth factor for sulfate and smoke scattering coefficients 
are estimated based on Hanel [1976] and Reid et al. [2005], 
respectively. The aerosol hygroscopic growth factor for sea 
salt extinction coefficient is estimated from Hegg et al. 
[2002] and Ming and Russell [2001]. 

[30] It is well understood that that aerosol physical and 
optical properties vary regionally and are highly event 
based. Therefore, using generalized aerosol optical proper- 
ties could introduce uncertainties (£bA) in tne estimated rb 

values. But for the purpose of radiation studies, aerosol 
optical depth and extinction are the variables of interest. The 
use of a bulk model in this way, while at time unphysical 
with respect to aerosol mass, ensures consistency in the 
atmospheric radiation fields. Indeed, the area of mass 
extinction efficiencies and extinction to mass transfer func- 
tion is an area of intensive research in the community. 

4.2. Creation of the Optical Depth Analysis Field 
[31] In the second step, both observation (roA, 2-D) and 

the background (rbA, 2-D) vectors developed in step 1 are 
interpolated to the observational domain, and a new analysis 
vector (rbA + f A, 2-D) is created by correcting background 
vector from observations as showed in equation (2). 
To estimate f A, both background and observational error 
covariance matrices are required. In this study, background 
and observational error covariance are defined as spatial 
error covariance and are assumed to be independent 
from meteorological parameters such as wind speed. The 
nature of the observational and background error variance 
and error covariance fields will be discussed in detail in 
section 5. 

4.3. Reciprocal Analysis Optical Depth to Mass 
Concentration Transfer Function (HT m Operator) 

[32] The third step in the optical depth data assimilation 
process is to apply fA to update the NAAPS mass concen- 
tration field. While it is relatively straightforward to go from 
3-D to 2-D as in section 4.1, without additional information 
the converse is ill-posed. To correct the background to the 
analysis field, where do we add or subtract aerosol particle 
mass (in vertical and compositional dimensions)? Further, 
how do we know the differences between errors in mass and 
hygroscopicity (either through the parameter or the 
NOGAPS RH field itself)? 

[33] Our current solution is to keep the transfer function 
straightforward and traceable. If f A is less than zero, which 
indicates rbA is higher than raA, the ratio of(rbA + i\)/Tb\ is 
used to reduce the amplitude of mass concentration vertical 
profile of a given air column; i.e., the concentration in each 
vertical level is reduced by the same fractional amount, and 
same for each aerosol composition. If fA = 0, raA equals to 
rbA, and no change is made to the air column. If fA > 0, rbA 

is lower than raA, then the amplitude of the vertical profile 
of aerosol mass is uniformly increased. Given NAAPS' goal 
of forecasting large visibility-reducing events, under most 

circumstances this simple method is sufficient. Again, with 
only 2-D satellite AOD observations available, this simple 
scaling technique is a valid first guess to redistribute column 
integrated AOD vertically. 

[34] Difficulties arise if the NAAPS aerosol source func- 
tion or transport meteorology totally misses an event that is 
observed in MODIS. Newly introduced aerosol features 
could be totally different from the model predictions in 
terms of aerosol species and vertical distributions. One of 
the solutions for this problem is to adopt a background bias 
correction technique [e.g., Dee and da Silva, 1998], which 
is the subject of ongoing research. As the first step of this 
study, two procedures are used to compensate for the 
problem: (1) for rbA > 0.10, the ratio of (rbA + fA)/-rbA is 
still used to scale up the mass concentration of a given air 
column; (2) for rbA < 0.10, a seasonal 3-D aerosol clima- 
tology created using 3 years (2004-2006) of NAAPS data 
is used. The NAAPS 3-D aerosol climatology was con- 
structed for dust, smoke, and sulfate aerosols, for broad 
regions (60° longitude by 30° latitude). 

4.4.   Forecast 
[35] As shown in Figure 1, we separated NAAPS model 

runs into two modes: assimilation run mode and forecast run 
mode. The assimilation run mode is defined as the NAAPS 
run initialized with NAVDAS-AOD analyses every 6 h in- 
terval. The free-running forecast or nonassimilation run 
mode refers to the time step when NAAPS model runs in 
a forecast mode without invoking the NAVDAS-AOD 
procedures described in sections 4.1-4.3. Since forecast 
accuracy is more important for operational models, in this 
study, we evaluated the impact of aerosol data assimilation 
not only to NAAPS assimilation runs, but also to NAAPS 
forecasts. 

5. Derivation of the Error and Error Covariance 
Matrices 

[36] As discussed in section 4, both background (model 
space) and observational error covariance matrices are crit- 
ical to the aerosol data assimilation process and are tightly 
connected through the physics of measurement. The error 
covariance matrices are composed of diagonal terms and 
nondiagonal terms. The diagonal terms represent error var- 
iances, and the nondiagonal terms represent spatial error 
covariances. In the following section, we show our estimates 
of both diagonal and nondiagonal terms of the observational 
error covariance matrix in section 5.1 and show the NAAPS 
model error covariance matrix in section 5.2. 

5.1.   Observational Coverage and Errors 
[37] In this study, we assume that observational errors are 

uncorrelated. That is, the error in one 1° x 1° MODIS 
level 3 aggregate is uncorrelated to the ones adjacent to it. 
In reality, this is certainly not the case. Because the MODIS 
algorithm is sensitive to aerosol microphysics (e.g., smoke 
versus dust) and the lower boundary condition (glint, white- 
capping), any large aerosol feature will have correlated 
errors. However, in the QA and correction procedures of 
Zhang and Reid [2006], most of the systematic uncertainties 
have been corrected. While this data treatment is by no 
means perfect, it does reduce correlated errors. 
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[38] The reason why this assumption is important is that it 
will zero out all the nondiagonal elements of the observa- 
tional error covariance matrix, which leaves only diagonal 
elements as the nonzero terms. The diagonal elements are 
simply observational error variances and are estimated using 
both instrumental error variance (of) and sample error 
variance (of) or so-called spatial representative error vari- 
ance. To estimate of, we used the RMS instrument error 
variance as suggested by Zhang and Reid [2006], which is 
similar after corrections to that proposed by Renter et al. 
[2005] for r < 0.6. The al represents spatial data variation 
and is estimated by the spatial sample variance from the 
averaging of MODIS r at 1 ° x 1 ° area. The total observa- 
tional error variance (al) is simply defined as equation (5): 

al^o^/n + aj (5) 

[39] In contrast with some of the studies that estimate 
background and observational error variances and/or disen- 
tangle the individual components of the observation errors 
using innovation statistics [e.g., Dee and da Silva, 1998, 
1999], we used AERONET optical depth observations that 
are independent from both model and satellite observations. 
The drawback of this approach is that AERONET observa- 
tions are point source observations and may not represent 
the bin-averaged AOD values in some cases. However, 
AERONET data, which is not included in the assimilation 
process, provide independent evaluations of both back- 
ground and satellite error variances. 

5.2.   Background Error and Error Covariance Matrix 
[40] The model background error covariance matrix is 

critical to the aerosol data assimilation as it determines the 
impact ranges of observations. For any given two grid 
locations, m and n, where for the 1° NAAPS model m 
and n ranging from 1 to 360 x 180, the background error 
covariance between the two grid points (PS") can be 
estimated as: 

pnn \^Cf[S^\ (6) 

where 5* and S'b are error variances at location m and n, 
respectively (also the diagonal terms of the error covariance 
matrix), and Cb is the error correlation between point m and 
n. The NAAPS error variance (Sb) is estimated as a function 
of NAAPS r, based on half year (January-June 2006) of 
analysis using NAAPS and AERONET data. To estimate Sb, 
we first computed model error variances for every 0.1 
NAAPS T interval (for r < 1.0) and then applied a linear 
regression through these error variance values. The overall 
square root of NAAPS model error variance is estimated 
to be 0.20 + 0.4T for NAAPS nonassimilation runs and is 
0.15 + 0.3T for NAAPS 6 h forecast with assimilation. 

[41] Give the fact that Cb contains 64,800 x 64,800 array 
elements and is computationally expensive to estimate each 
single term, we estimated Cb using the second order autor- 
egressive (SOAR) function [Daley and Barker, 2001], as the 
horizontal correlation model and is shown in equation (7): 

Cb(m,n) = (\+Rmn/L)exp(-Rnn/L) (7) 

where Rm„ is the great circle distance and L is the global 
averaged horizontal error correlation length. A value for L 
of 200 km is used in this study. We validated our choice of L 
in section 6.3 by studying the spatial correlation of 
observation minus forecast. 

6.    Results from NAVDAS-AOD 

[42] Using the new over-water level 3 MODIS product 
[Zhang and Reid, 2006] from January to May 2006, we 
evaluated the performance of the NRL aerosol data assim- 
ilation package. In section 6.1, we show a case study over 
the west coast of Africa; in section 6.2, we assess the impact 
of aerosol assimilation on NAAPS performance globally 
with the use of AERONET and MODIS data. 

6.1. An African Case Study 
[43] To demonstrate the impact of data assimilation on 

NAAPS fields, we use African dust as an example. Figure 2a 
shows the Terra MODIS true color image over the west 
coast of Africa for 30 May 2006. A large dust outbreak is 
observed off the coast of North Africa. Figure 2b shows the 
daily 1° (latitude/longitude) averaged r from the combined 
(Terra+ Aqua) data assimilation quality level 3 MODIS 
aerosol product. Consistent with Figure 2a, heavy dust 
plumes with r around 0.5 appear over the west coast of 
North Africa. Note that as mentioned in section 2, stringent 
data screening methods were applied to the operational level 
2 MODIS aerosol product during the process of construct- 
ing a daily gridded MODIS aerosol product that meets the 
data assimilation standard. Therefore, we expect a much 
reduced spatial coverage from the newly developed MODIS 
level 3 aerosol product, compared with the operational level 
2 MODIS aerosol product. Figure 2c shows the r plot from 
the NAAPS nonassimilation run (without use of NAVDAS- 
AOD) for 1200 UTC, 30 May 2006. The NAAPS non- 
assimilation run underestimated both the strength and spa- 
tial coverage of the heavy dust plumes shown in Figures 2a 
and 2b. Figure 2d shows the result after continuous NAAPS 
assimilation runs from 1 January 2006. As illustrated in 
Figure 2d, the NAAPS model run with the NAVDAS-AOD 
included, captures both high r regions over the coast 
regions and the transport path of the dust plumes across 
the Atlantic Ocean. 

6.2. Global Statistics 
[44] To evaluate the impact of the data assimilation process 

on NAAPS globally, we compared results to AERONET data 
[Holben etal, 1998]. Since only over-ocean MODIS aerosol 
retrievals were used in this study, our comparisons were 
limited to the coastal and island AERONET sites. Note that 
AERONET data are point source data and may not neces- 
sarily represent 1 ° x 1 ° bin averaged mean AOD values. A 
total of 5 months of AERONET optical depth data from 
January to May 2006 were included, and one pair of NAAPS 
and AERONET data were selected for in the analysis when 
the time gap between the NAAPS and AERONET data was 
within ±30 min. 

[45] Figure 3a shows the scatterplot of NAAPS non- 
assimilation run and Sun photometer r. The overall corre- 
lation between the two variables is 0.49. The absolute 
errors, estimated using all data points and separately using 
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Figure 2. (a) MODIS true color image for 30 May 2006; (b) daily averaged MODIS (Terra + Aqua) r for 
the same day as Figure 2a. Notice that with the stringent data cleaning processes, Figure 2b may be different 
from the plot that is created using the operational level 2 MODIS aerosol product; (c) NAAPS r analysis for 
1200 z, 30 May 2006, without the use of NAVDAS-AOD; (d) NAAPS T analysis for 1200 z, 30 May 2006, 
with 5 months of data assimilation. 

data points that have AERONET r larger than 0.2 are 0.11 
and 0.23, respectively. However, these statistics are mis- 
leading in that a multimodal data distribution pattern is 
observed. The vertical population (Sun photometer T < 0.5, 
NAAPS r » 0.5) represents events that are overpredicted 
by NAAPS. The horizontal population (NAAPS r < 0.5, 
Sun photometer r > 0.5) represents events that are missed 
or underpredicted by NAAPS. Both errors may also be due 
to an aerosol event in NAAPS that is phase-shifted from its 
real location. This is particularly likely near and downwind 
of underreported regions of the world such as Africa and 
South America. 

[46] Nevertheless, once data assimilation is included, we 
find a remarkable improvement. Figure 3b shows the 
scatterplot of AERONET versus NAAPS r for the NAAPS 
data from the NAVDAS-AOD mode runs. With the inclu- 
sion of MODIS data, the correlation between NAAPS and 
AERONET T is improved to 0.73, and more importantly we 
found a 40% reduction in absolute errors for all data points 
and for data points with AERONET r larger than 0.2. 

[47] To increase spatial coverage over the ocean, we also 
compared NAAPS data against the level 3 MODIS data that 
were developed by Zhang and Reid [2006]. As an example, 
Figure 4a shows the scatterplot of over-ocean MODIS T 

versus NAAPS r (from nonassimilation run) for the period 
of March to May 2006 were used (the NAAPS and MODIS 
data from the full range of the study period is not shown, as 
the data volume is enormous and similar plots like Figure 4 

were found for every single month). As with AERONET 
comparison, a multimodal pattern is also observed in 
comparing with daily gridded MODIS data (Figure 4a). 
This is due to the reasons described in the previous 
paragraph, indicating a need for improving NAAPS forecast 
accuracy through various means, including the use of the 
NAVDAS-AOD. Figure 4b shows the scatterplot of MODIS 
T versus NAAPS r (with the NAVDAS-AOD included) for 
the same time period as Figure 4a. Since MODIS data were 
used in the NAAPS assimilation mode runs, therefore, 
instead of comparing MODIS data with the NAAPS data 
from the assimilation mode runs, we compared MODIS data 
with the NAAPS data from the 6 h forecast mode runs. The 
NAVDAS-AOD is used to modify the NAAPS initial 
condition at t = 0, using MODIS data from —3 h < t < 
+3 h. NAAPS is then run in forecast mode to t = +6 h, and 
the result are compared with MODIS observations having 
+3 h < t < +9 h. With the use of the NAVDAS-AOD, even 
after 6 h forecast run, the correlation is improved from 0.57 
to 0.81, and the absolute error reduced by 40-50% for all 
data points and for data points with AERONET r > 0.2 as 
well. Figure 3 and 4 indicate that with careful QA and QC 
processes, satellite data can benefit aerosol forecasts. 

[48] Figure 4 demonstrates the influence of aerosol data 
assimilation through point comparisons between MODIS 
and NAAPS T. Figure 5 further illustrates the regional 
differences in NAAPS model runs with and without the 
inclusion of the NAVDAS-AOD. Figure 5a shows the 
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Figure 5b shows the averaged NAAPS r from NAAPS 
nonassimilation runs for the same period as Figure 5a. The 
NAAPS nonassimilation runs could reproduce dust aerosol 
fronts shown in Figure 5a. However, the magnitudes of the 
dust optical depth are underestimated for both regions. 
Furthermore, the NAAPS nonassimilation runs miss the 
major biomass burning and the pollutant aerosol plums that 
are visible in Figure 5a. Figure 5c shows the three month 
averaged NAAPS r from the assimilation runs. The NAAPS 
assimilation runs successfully reproduce both the spatial 
distributions and magnitudes of the dust episode and are 
also able to simulate the smoke and pollutant aerosol 
plumes missed by the NAAPS nonassimilation runs. 

[49] We also evaluated the performance of NAAPS 
6-h forecasts. Figure 5d shows the 3-month averaged 
NAAPS 6-h forecast runs after ingesting observations at 
the analysis time t = 0. Similar patterns of r are shown as 
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Figure 3. (a) AERONET versus NAAPS r for 5-month 
(January-May 2006) NAAPS nonassimilation run; 
(b) AERONET versus NAAPS r for 5-month (January- 
May 2006) NAAPS run with the aerosol data assimilation 
process. 

3 month averaged (March-May 2006), 1° x 1° latitude/ 
longitude gridded MODIS r from the MODIS level 3 prod- 
ucts used in this study. Outliers are more damaging to 
NAVDAS-AOD analysis quality than data losses. There- 
fore, in the newly developed MODIS level 3 aerosol 
products, stringent data screening processes (as explained 
in section 2) were applied to reduce noise and outliers. 
Hence, the 3 month averaged MODIS r plot showed in 
Figure 5a could be different from the plot generated using 
the operational MODIS level 2 product. For example, there 
are data gaps (in black) over the high-latitude southern 
hemisphere, due to high frequency of cloud cover over that 
region, which may not be observed if the plot is generated 
using operational MODIS level 2 aerosol product. In Figure 
5a, large dust aerosol fronts are visible off the West Coast of 
Africa and East Coast of Asia. Biomass burning smoke is 
observed over Central America and the northwest coast of 
North America, and pollutant aerosols are found over India. 
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Figure 4. (a) MODIS versus NAAPS r for 3-month 
(March-May 2006) NAAPS nonassimilation run; (b) 
MODIS versus NAAPS r for 3-month (March-May 2006) 
NAAPS 6-h forecast run (t = +6 h). The NAVDAS-AOD is 
used to modify the NAAPS initial condition at t = 0. 
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Figure 5. (a) Three-month (March-May 2006) averaged MODIS (Terra + Aqua) r. Notice the 
newly developed MODIS level 3 product is used. Therefore, there could be discrepancies between 
Figure 5a and the image that is created using the operational MODIS level 2 aerosol product (see 
section 6.2); (b) 3-month (same months as Figure 5a) averaged NAAPS r (total) from NAAPS 
nonassimilation run; (c) 3-month (same months as Figure 5a) averaged NAAPS r (total) from 
NAAPS assimilation run. (d) Three-month (same months as Figure 5a) averaged NAAPS r (total) 
from 6-h NAAPS forecast run after assimilation run at t = 0. 

Figure 5c with slight reductions in magnitude, indicating 
that the NAVDAS-AOD improves model performance at 
even the 6-h forecast timescale. The globally averaged r 
over oceans are approximately 0.13, 0.06, 0.12, and 0.12 for 
Figures 5a-5d, respectively. NAAPS nonassimilation runs 
underestimate the magnitude of globally averaged r over 
oceans, while with the use of NAVDAS-AOD, NAAPS 
aerosol forecasting performance is improved. 

[50] As NAAPS is an operational aerosol forecasting 
model, we are not only interested in the improvement in 
NAAPS' aerosol analysis when satellite data are available 
but are also interested in whether the use of NAVDAS-AOD 

at time t = 0 could help aerosol forecasts for a longer period. 
Figure 6a shows the absolute error (|Ar|, in absolute 
difference) between NAAPS and AERONET r values 
(coast and island sites) as a function of forecast hour in 
the forecast mode run. Data from March to May of 2006 
were used in the analysis. The dashed lines show the |Ar| 
values for NAAPS nonassimilation run. The solid lines 
show the |Ar| values when the NAAPS run in the assim- 
ilation mode before and at forecast time 0 but not in any 
other time after forecast time 0. The black line with 
diamond symbols shows the |AT| values for all data points 
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Figure 6. (a) Three-month (March-May 2006) averaged differences between AERONET and NAAPS 
(nonassimilation run) r as a function of number of hour in forecast mode run. The black line with 
diamond symbols is derived using all data points. The black line with star symbols is derived using pairs 
of AERONET and NAAPS data with AERONET r larger than 0.2. Light gray line shows correlation 
between AERONET and NAAPS r as a function of forecasting time; (b) 3-month (March-May 2006) 
averaged differences between MODIS and NAAPS (with data assimilation at time 0) r as a function of 
number of hour in forecast mode run. The definitions for solid block, and light gray lines are similar to 
that of Figure 6a, except for MODIS and NAAPS analyses. 

and the black line with star symbols shows the |Ar| values 
for data points with Sun photometer r larger than 0.2. 

[51] When all data were used in the analysis, the absolute 
difference between AERONET and NAAPS r with the use of 
NAVDAS-AOD is 0.07 at forecast time 0 (A 40% reduction 
in I Ar|). As expected, |AT| values increase with time during 
the forecast run. However, even after 48 h of forecast run, the 
absolute error is about 20% less than that without the use of 
NAVDAS-AOD. The improvements hold for larger aerosol 
events. For example, the black line with star symbols shows 
the same analysis as the black line with diamond symbols for 
data points with AERONET r larger than 0.2, with a 
reduction in error of about 20%. The light gray line in Figure 
6a shows the correlation between AERONET and NAAPS r 

as a function of NAAPS forecasting time. After 48 h of 
NAAPS run in a nonassimilation mode, the correlation is 
reduced from 0.75 to 0.58. 

[52] We repeated the analysis using MODIS over-ocean 
data (Figure 6b). The low |Ar| values at time 0 (solid black 
lines) are due to MODIS data ingested in the assimilation 
process at time 0. For up to 48 h in forecast mode run, the 
|AT| values for all data points and for data points with 
AERONET T > 0.2 are 30-40% lower than the |Ar| values 
estimated using the NAAPS data from the nonassimilation 
run. Note that in Figure 6b, from t = 0 h to t = 6 h, there is a 
sudden increase in absolute error. The sudden increase in 
absolute error could be attributed to the fact that over ocean 
satellite data are ingested at t = 0 h, while at t = 6 h, large 
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Figure 7. Spatial correlations of satellite observation (O) minus NAAPS 6-h forecast (F) as a 
function of distance. Averaged (every 50 km) spatial correlations of O-F are shown for four different 
MODIS T ranges: 0.0-0.1 (plus sign), 0.1-0.2 (star), 0.2-0.4 (diamond), and 0.4-0.8 (triangle), and 
for all MODIS r ranges (solid black dots). Vertical bars show one standard deviation of the averaged 
spatial correlation for all MODIS r ranges. Black line shows the SOAR function (equation (7)) fit 
with L set to 200 km. 

forecasting errors are propagated from inland continents to 
global oceans along the costal lines. Similar to Figure 6a, 
the gray line shows the correlation between MODIS and 
NAAPS r as a function of forecasting time. Again, as 
expected, the correlation reduces as forecasting time 
increases. Although, even after 48 h the forecast is 
substantially better with data assimilation. It worth men- 
tioning that at time 0, the correlation between MODIS 
and NAAPS r is near 1, which indicates that NAVDAS- 
AOD package properly merges MODIS aerosol optical 
depth data into the analysis fields. 

6.3.   Innovation Checks and Problems 
[53] In this section, we evaluated the differences between 

satellite observation (O), and 6 h mode forecast (F, at t = 6 h). 
Figure 7 shows the spatial correlation of O minus F (O-F) as a 
function of distance. The spatial correlation of O-F for two 
given locations (m,n) is used to represent Q,(m, n) in equation 
(7). Both satellite and forecasting data from March to May 
2006 were used. To calculate spatial correlation of O-F for 
two given locations, we require that there are at least 30 pairs 
of O-F values with identical time tags, and we assume a zero 
spatial correlation for any two locations separated by more 
than 2000 km. Figure 7 shows the spatial correlation of O-F 
as a function of distance for four MODIS T ranges: 0.0-0.1 
(plus sign), 0.1-0.2 (star), 0.2-0.4 (diamond), and 0.4-0.8 
(triangle), and for all MODIS r ranges (solid black dots). The 
vertical bars represent one standard deviation to the spatial 
correlation values for all MODIS r ranges. The black line, 
which is calculated using equation 7 with L set to 200 km, fits 
well with the solid black dots. This indicates that L value of 
200 km is a reasonable estimation of the background error 
correlation length. 

[54] We also examined the spatial distributions of O-F, 
and O minus analysis (A, at t = 0 h). Figure 8a shows the map 
of 3-month averaged O-A, and Figure 8b shows the square 
root of variance (STD) of O-A for March-May 2006. Since a 
high correlation of above 0.98 is constantly observed 
between O and A, it is not surprised to see that the 3 month 
mean and STD of O-A values are near-zero spatially. 

[55] Figure 8c and 8d show the 3 month averaged O-F, and 
the square root of variance of O-F, respectively, for the same 
study period as Figure 8a and 8b. In Figure 8c and 8d, the 
global averaged O-F value is less than 0.01 and the global 
averaged STD value is on the order of 0.05. However, large 
O-F values are observed over west coast of Africa where 
consistent dust plumes are located. High O-F values are also 
found over east Asia. Given the fact that only over-ocean 
MODIS data were used in the assimilation process, the high 
O-F values are mostly introduced by propagating of forecast 
errors from land to ocean. However, the large O-F values may 
also be due to the following factors: 

[56] 1. Background error correlation is assumed to be 
isotropic in this study. However, this is not a good assump- 
tion for regions with sharp aerosol fronts. 

[57] 2. Existence of forecast biases. A background bias 
correction scheme [e.g., Dee and da Silva, 1998; 1999], as a 
function of region and season, may need to be implemented 
in a future version of NAVDAS-AOD. 

7.    Discussion, Conclusion, and Future Work 

[58] In this paper, we present a new aerosol data assim- 
ilation package that is currently running in a pseudo- 
operational mode with the Naval Research Laboratory, 
Marine Meteorology Division's NAAPS model. A 2-D 
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Figure 8. (a) Global map of the three month averaged satellite observation (O) minus NAAPS analysis 
(A) values for March-May 2006. (b) Square root of variance (STD) of O-A. (c) Similar to Figure 8a but 
for O-F. (d) Similar to Figure 8b but for O-F 

variational technique based on NAVDAS is used to inte- 
grate model output from NAAPS and satellite observations 
from a newly developed MODIS level 3 product. The new 
level 3 MODIS aerosol product is generated from the 
operational MODIS aerosol level 2 product through rigor- 
ous QA processes. An overall assessment of the NAVDAS- 
AOD and directions for future research are listed as follows: 

[59] 1. With the use of satellite observations from 
MODIS, especially with careful data screening process, 
our study indicates that the NAVDAS-AOD not only 
improves the accuracy of analyzed global aerosol distribu- 
tion at times when satellite data are available, but also 
improves the accuracy of the estimations in a forecast mode 
for 48 h or more. 

[60] 2. One major problem with this study is the three- 
dimensional redistribution of aerosol plumes when NAAPS 
reports an erroneously low T value. This happens when 
NAAPS misses an aerosol feature. To address this problem, 
3-D observations from CALIPSO system are needed for 
future evaluation. 

[6i] 3. As suggested in section 6.3, a background bias 
correction method [e.g., Dee and da Silva, 1998; 1999] 
needs to be explored and possibly used in a future version of 
NAVDAS-AOD. 

[62] 4. This study focused on over-ocean aerosol data 
assimilation. An over-land aerosol data assimilation process 
is being developed in a separate project. 

[63] 5. The error covariance matrix for both background 
and observations are critical for the data assimilation 
process. In this study, the errors in observations are assumed 
to be uncorrelated. The nondiagonal terms of background 
error covariance matrix are estimated using a SOAR func- 
tion with a specified error correlation length estimated from 
the differences between MODIS and NAAPS r. However, 
as illustrated in the paper, the error correlation length varies 
as a function of location and time and is most significant 

when large aerosol plumes exist. In future studies, we plan 
to implement a regional error correlation length model and, 
eventually, a simplified version of the real error correlation 
matrix as computations permit. 

[M] 6. The NAVDAS-AOD is currently running quasi- 
operationally and the NAAPS data with the assimilation can 
be accessed through www.nrlmry.navy.mil/aerosol/ in the 
near future. 
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